
Chapter 7

Run-Time Environments

Outline
 Compiler must do the storage allocation and provide

access to variables and data

 Memory management

 Stack allocation

 Heap management

 Garbage collection

Storage Organization

Static vs. Dynamic Allocation
 Static: Compile time, Dynamic: Runtime allocation

 Many compilers use some combination of following

 Stack storage: for local variables, parameters and so on

 Heap storage: Data that may outlive the call to the
procedure that created it

 Stack allocation is a valid allocation for procedures
since procedure calls are nested

Sketch of a quicksort program

Activation for Quicksort

Activation tree representing calls during
an execution of quicksort

Activation records
 Procedure calls and returns are usaully managed by a

run-time stack called the control stack.

 Each live activation has an activation record
(sometimes called a frame)

 The root of activation tree is at the bottom of the stack

 The current execution path specifies the content of the
stack with the last activation has record in the top of
the stack.

A General Activation Record

Activation Record
 Temporary values

 Local data

 A saved machine status

 An “access link”

 A control link

 Space for the return value of the called function

 The actual parameters used by the calling procedure

Downward-growing stack of activation records

Designing Calling Sequences
 Values communicated between caller and callee are

generally placed at the beginning of callee’s activation
record

 Fixed-length items: are generally placed at the middle

 Items whose size may not be known early enough: are
placed at the end of activation record

 We must locate the top-of-stack pointer judiciously: a
common approach is to have it point to the end of
fixed length fields.

Division of tasks between caller and callee

calling sequence
 The caller evaluates the actual parameters

 The caller stores a return address and the old value of
top-sp into the callee's activation record.

 The callee saves the register values and other status
information.

 The callee initializes its local data and begins
execution.

corresponding return sequence
 The callee places the return value next to the

parameters

 Using information in the machine-status field, the
callee restores top-sp and other registers, and then
branches to the return address that the caller placed in
the status field.

 Although top-sp has been decremented, the caller
knows where the return value is, relative to the current
value of top-sp; the caller therefore may use that value.

Access to dynamically allocated arrays

ML
 ML is a functional language

 Variables are defined, and have their unchangeable
values initialized, by a statement of the form:

val (name) = (expression)

 Functions are defined using the syntax:
fun (name) ((arguments)) = (body)

 For function bodies we shall use let-statements of the
form:

let (list of definitions) in (statements) end

A version of quicksort, in ML style, using
nested functions

Access links for finding nonlocal data

Sketch of ML program that uses function-
parameters

Actual parameters carry their
access link with them

Maintaining the Display

Maintaining the Display (Cont.)

Memory Manager
 Two basic functions:

 Allocation

 Deallocation

 Properties of memory managers:

 Space efficiency

 Program efficiency

 Low overhead

Typical Memory Hierarchy Configurations

Locality in Programs
The conventional wisdom is that programs spend 90% of

their time executing 10% of the code:

 Programs often contain many instructions that are
never executed.

 Only a small fraction of the code that could be invoked
is actually executed in a typical run of the program.

 The typical program spends most of its time executing
innermost loops and tight recursive cycles in a
program.

Part of a Heap

28

Reference Counting

Mark-and-Sweep

Short-Pause Methods

29

The Essence
 Programming is easier if the run-time system

“garbage-collects” --- makes space belonging to
unusable data available for reuse.

 Java does it; C does not.

 But stack allocation in C gets some of the advantage.

30

Desiderata
1. Speed --- low overhead for garbage collector.

2. Little program interruption.
 Many collectors shut down the program to hunt for

garbage.

3. Locality --- data that is used together is placed
together on pages, cache-lines.

31

The Model --- (1)
 There is a root set of data that is a-priori reachable.

 Example: In Java, root set = static class variables plus
variables on run-time stack.

 Reachable data : root set plus anything referenced
by something reachable.

32

The Model --- (2)
 Things requiring space are “objects.”

 Available space is in a heap --- large area managed by
the run-time system.

 Allocator finds space for new objects.

 Space for an object is a chunk.

 Garbage collector finds unusable objects, returns their
space to the heap, and maybe moves objects around in
the heap.

33

A Heap

. . .

Object 1 Object 3Object 2

Free List

34

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

35

Reference Counting
 The simplest (but imperfect) method is to give each

object a reference count = number of references to
this object.

 OK if objects have no internal references.

 Initially, object has one reference.

 If reference count becomes 0, object is garbage and its
space becomes available.

36

Examples
Integer i = new Integer(10);

 Integer object is created with RC = 1.

j = k; (j, k are Integer references.)

 Object referenced by j has RC--.

 Object referenced by k has RC++.

37

Transitive Effects
 If an object reaches RC=0 and is collected, the

references within that object disappear.

 Follow these references and decrement RC in the
objects reached.

 That may result in more objects with RC=0, leading to
recursive collection.

38

Example: Reference Counting
Root

Object

A(1)

E(1)D(2)

B(2)

C(1)

39

Example: Reference Counting
Root

Object

A(0)

E(1)D(2)

B(2)

C(1)

40

Example: Reference Counting
Root

Object

E(1)D(2)

B(1)

C(0)

41

Example: Reference Counting
Root

Object

E(1)D(1)

B(1)
B, D, and E are

garbage, but their

reference counts

are all > 0. They

never get collected.

42

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic

43

Four States of Memory Chunks
1. Free = not holding an object; available for

allocation.

2. Unreached = Holds an object, but has not yet
been reached from the root set.

3. Unscanned = Reached from the root set, but its
references not yet followed.

4. Scanned = Reached and references followed.

44

Marking
1. Assume all objects in Unreached state.

2. Start with the root set. Put them in state Unscanned.

3. while Unscanned objects remain do

examine one of these objects;

make its state be Scanned;

add all referenced objects to Unscanned
if they have not been there;

end;

45

Sweeping
 Place all objects still in the Unreached state into the

Free state.

 Place all objects in Scanned state into the Unreached
state.

 To prepare for the next mark-and-sweep.

46

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’s

47

Baker’s Algorithm --- (1)
 Problem: The basic algorithm takes time proportional

to the heap size.

 Because you must visit all objects to see if they are
Unreached.

 Baker’s algorithm keeps a list of all allocated chucks of
memory, as well as the Free list.

48

Baker’s Algorithm --- (2)
 Key change: In the sweep, look only at the list of

allocated chunks.

 Those that are not marked as Scanned are garbage
and are moved to the Free list.

 Those in the Scanned state are put in the
Unreached state.

 For the next collection.

49

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic

50

Issue: Why Compact?
 Compact = move reachable objects to contiguous

memory.

 Locality --- fewer pages or cache-lines needed to hold
the active data.

 Fragmentation --- available space must be managed so
there is space to store large objects.

51

Mark-and-Compact
1. Mark reachable objects as before.

2. Maintain a table (hash?) from reached chunks to
new locations for the objects in those chunks.

 Scan chunks from low end of heap.

 Maintain pointer free that counts how much
space is used by reached objects so far.

52

Mark-and-Compact --- (2)
3. Move all reached objects to their new locations,

and also retarget all references in those objects to
the new locations.

 Use the table of new locations.

4. Retarget root references.

53

Example: Mark-and-Compact

free

54

Example: Mark-and-Compact

free

55

Example: Mark-and-Compact

free

56

Example: Mark-and-Compact

free

57

Example: Mark-and-Compact

free

58

Example: Mark-and-Compact

free

59

Example: Mark-and-Compact

free

60

Example: Mark-and-Compact

free

61

Example: Mark-and-Compact

free

62

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

A different Cheney, BTW, so no jokes, please.

63

Cheney’s Copying Collector
 A shotgun approach to GC.

 2 heaps: Allocate space in one, copy to second when
first is full, then swap roles.

 Maintain table of new locations.

 As soon as an object is reached, give it the next free
chunk in the second heap.

 As you scan objects, adjust their references to point
to second heap.

64

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial

65

Short-Pause Garbage-Collection
1. Incremental --- run garbage collection in parallel

with mutation (operation of the program).

2. Partial --- stop the mutation, but only briefly, to
garbage collect a part of the heap.

66

Problem With Incremental GC
 OK to mark garbage as reachable.

 Not OK to GC a reachable object.

 If a reference r within a Scanned object is mutated
to point to an Unreached object, the latter may be
garbage-collected anyway.

 Subtle point: How do you point to an Unreached
object?

67

One Solution: Write Barriers
 Intercept every write of a reference in a scanned object.

 Place the new object referred to on the Unscanned list.

 A trick: protect all pages containing Scanned objects.

 A hardware interrupt will invoke the fixup.

68

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial

Generational

69

The Object Life-Cycle
 “Most objects die young.”

 But those that survive one GC are likely to survive many.

 Tailor GC to spend more time on regions of the heap
where objects have just been created.

 Gives a better ratio of reclaimed space per unit time.

70

Partial Garbage Collection
 We collect one part(ition) of the heap.

 The target set.

 We maintain for each partition a remembered set of
those objects outside the partition (the stable set) that
refer to objects in the target set.

 Write barriers can be used to maintain the remembered
set.

71

Collecting a Partition
 To collect a part of the heap:

1. Add the remembered set for that partition to the root
set.

2. Do a reachability analysis as before.

 Note the resulting Scanned set may include garbage.

72

Example: “Reachable” Garbage

The target

partition
Not reached from

the root set

In the remembered set

Stable set

73

Generational Garbage Collection
 Divide the heap into partitions P0, P1,…

 Each partition holds older objects than the one before it.

 Create new objects in P0, until it fills up.

 Garbage collect P0 only, and move the reachable
objects to P1.

74

Generational GC --- (2)
 When P1 fills, garbage collect P0 and P1, and put the

reachable objects in P2.

 In general: When Pi fills, collect P0, P1,…,Pi and put
the reachable objects in P(i +1).

75

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial

GenerationalTrain

76

The Train Algorithm
 Problem with generational GC:

1. Occasional total collection (last partition).

2. Long-lived objects move many times.

 Train algorithm useful for long-lived objects.

 Replaces the higher-numbered partitions in
generational GC.

77

Partitions = “Cars”

Car 11Train 1

Car 2kCar 22Car 21

Car n2Car n1

Car 13Car 12

. . .Train 2

Train n

.

.

.

78

Organization of Heap
 There can be any number of trains, and each train can

have any number of cars.

 You need to decide on a policy that gives a reasonable
number of each.

 New objects can be placed in last car of last train, or
start a new car or even a new train.

79

Garbage-Collection Steps
1. Collect the first car of the first train.

2. Collect the entire first train if there are no references
from the root set or other trains.

 Important: this is how we find and eliminate large,
cyclic garbage structures.

80

Remembered Sets
 Each car has a remembered set of references from later

trains and later cars of the same train.

 Important: since we only collect first cars and trains,
we never need to worry about “forward” references (to
later trains or later cars of the same train).

81

Collecting the First Car of the
First Train

 Do a partial collection as before, using every other
car/train as the stable set.

 Move all Reachable objects of the first car
somewhere else.

 Get rid of the car.

82

Moving Reachable Objects
 If object o has a reference from another train, pick one

such train and move o to that train.

 Same car as reference, if possible, else make new car.

 If references only from root set or first train, move o to
another car of first train, or create new car.

83

Panic Mode
 The problem: it is possible that when collecting the

first car, nothing is garbage.

 We then have to create a new car of the first train that
is essentially the same as the old first car.

84

Panic Mode --- (2)
 If that happens, we go into panic mode, which

requires that:

1. If a reference to any object in the first train is
rewritten, we make the new reference a “dummy”
member of the root set.

2. During GC, if we encounter a reference from the
“root set,” we move the referenced object to another
train.

85

Panic Mode --- (3)
 Subtle point: If references to the first train never

mutate, eventually all reachable objects will be sucked
out of the first train, leaving cyclic garbage.

 But perversely, the last reference to a first-train object
could move around so it is never to the first car.

