
Chapter 7

Run-Time Environments



Outline
 Compiler must do the storage allocation and provide 

access to variables and data

 Memory management

 Stack allocation

 Heap management

 Garbage collection



Storage Organization



Static vs. Dynamic Allocation
 Static: Compile time, Dynamic: Runtime allocation

 Many compilers use some combination of following

 Stack storage: for local variables, parameters and so on

 Heap storage: Data that may outlive the call to the 
procedure that created it

 Stack allocation is a valid allocation for procedures 
since procedure calls are nested



Sketch of a quicksort program



Activation for Quicksort



Activation tree representing calls during 
an execution of quicksort



Activation records
 Procedure calls and returns are usaully managed by a 

run-time stack called the control stack.

 Each live activation has an activation record 
(sometimes called a frame)

 The root of activation tree is at the bottom of the stack

 The current execution path specifies the content of the 
stack with the last activation has record in the top of 
the stack.



A General Activation Record



Activation Record
 Temporary values

 Local data

 A saved machine status

 An “access link”

 A control link

 Space for the return value of the called function

 The actual parameters used by the calling procedure



Downward-growing stack of activation records



Designing Calling Sequences
 Values communicated between caller and callee are 

generally placed at the beginning of callee’s activation 
record

 Fixed-length items: are generally placed at the middle

 Items whose size may not be known early enough: are 
placed at the end of activation record

 We must locate the top-of-stack pointer judiciously: a 
common approach is to have it point to the end of 
fixed length fields.



Division of tasks between caller and callee



calling sequence
 The caller evaluates the actual parameters

 The caller stores a return address and the old value of 
top-sp into the callee's activation record.

 The callee saves the register values and other status 
information.

 The callee initializes its local data and begins 
execution.



corresponding return sequence
 The callee places the return value next to the 

parameters

 Using information in the machine-status field, the 
callee restores top-sp and other registers, and then 
branches to the return address that the caller placed in 
the status field.

 Although top-sp has been decremented, the caller 
knows where the return value is, relative to the current 
value of top-sp; the caller therefore may use that value.



Access to dynamically allocated arrays



ML
 ML is a functional language

 Variables are defined, and have their unchangeable 
values initialized, by a statement of the form:

val (name) = (expression)

 Functions are defined using the syntax:
fun (name) ( (arguments) ) = (body)

 For function bodies we shall use let-statements of the 
form:

let (list of definitions) in (statements) end



A version of quicksort, in ML style, using 
nested functions



Access links for finding nonlocal data



Sketch of ML program that uses function-
parameters



Actual parameters carry their 
access link with them



Maintaining the Display



Maintaining the Display (Cont.)



Memory Manager
 Two basic functions:

 Allocation

 Deallocation

 Properties of memory managers:

 Space efficiency

 Program efficiency

 Low overhead



Typical Memory Hierarchy Configurations



Locality in Programs
The conventional wisdom is that programs spend 90% of 

their time executing 10% of the code:

 Programs often contain many instructions that are 
never executed.

 Only a small fraction of the code that could be invoked 
is actually executed in a typical run of the program.

 The typical program spends most of its time executing 
innermost loops and tight recursive cycles in a 
program.



Part of a Heap
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Reference Counting

Mark-and-Sweep

Short-Pause Methods
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The Essence
 Programming is easier if the run-time system 

“garbage-collects” --- makes space belonging to 
unusable data available for reuse.

 Java does it; C does not.

 But stack allocation in C gets some of the advantage.
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Desiderata
1. Speed --- low overhead for garbage collector.

2. Little program interruption.
 Many collectors shut down the program to hunt for 

garbage.

3. Locality --- data that is used together is placed 
together on pages, cache-lines.
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The Model --- (1)
 There is a root set of data that is a-priori reachable.

 Example: In Java, root set = static class variables plus 
variables on run-time stack.

 Reachable data : root set plus anything referenced 
by something reachable.
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The Model --- (2)
 Things requiring space are “objects.”

 Available space is in a heap --- large area managed by 
the run-time system.

 Allocator finds space for new objects.

 Space for an object is a chunk.

 Garbage collector finds unusable objects, returns their 
space to the heap, and maybe moves objects around in 
the heap.
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A Heap

. . .

Object 1 Object 3Object 2

Free List
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Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based
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Reference Counting
 The simplest (but imperfect) method is to give each 

object a reference count = number of references to 
this object.

 OK if objects have no internal references.

 Initially, object has one reference.

 If reference count becomes 0, object is garbage and its 
space becomes available.
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Examples
Integer i = new Integer(10);

 Integer object is created with RC = 1.

j = k; (j, k are Integer references.)

 Object referenced by j has RC--.

 Object referenced by k has RC++.
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Transitive Effects
 If an object reaches RC=0 and is collected, the 

references within that object disappear.

 Follow these references and decrement RC in the 
objects reached.

 That may result in more objects with RC=0, leading to 
recursive collection.



38

Example: Reference Counting
Root

Object

A(1)

E(1)D(2)

B(2)

C(1)
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Example: Reference Counting
Root

Object

A(0)

E(1)D(2)

B(2)

C(1)



40

Example: Reference Counting
Root

Object

E(1)D(2)

B(1)

C(0)
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Example: Reference Counting
Root

Object

E(1)D(1)

B(1)
B, D, and E are

garbage, but their

reference counts

are all > 0.  They

never get collected.



42

Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic
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Four States of Memory Chunks
1. Free = not holding an object; available for 

allocation.

2. Unreached = Holds an object, but has not yet 
been reached from the root set.

3. Unscanned = Reached from the root set, but its 
references not yet followed.

4. Scanned = Reached and references followed.
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Marking
1. Assume all objects in Unreached state.

2. Start with the root set.  Put them in state Unscanned.

3. while Unscanned objects remain do

examine one of these objects;

make its state be Scanned;

add all referenced objects to Unscanned
if they have not been there;

end;
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Sweeping
 Place all objects still in the Unreached state into the 

Free state.

 Place all objects in Scanned state into the Unreached
state.

 To prepare for the next mark-and-sweep.
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Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’s
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Baker’s Algorithm --- (1)
 Problem: The basic algorithm takes time proportional 

to the heap size.

 Because you must visit all objects to see if they are 
Unreached.

 Baker’s algorithm keeps a list of all allocated chucks of 
memory, as well as the Free list.
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Baker’s Algorithm --- (2)
 Key change: In the sweep, look only at the list of 

allocated chunks.

 Those that are not marked as Scanned are garbage 
and are moved to the Free list.

 Those in the Scanned state are put in the 
Unreached state.

 For the next collection.
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Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic
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Issue: Why Compact?
 Compact = move reachable objects to contiguous 

memory.

 Locality --- fewer pages or cache-lines needed to hold 
the active data.

 Fragmentation --- available space must be managed so 
there is space to store large objects.
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Mark-and-Compact
1. Mark reachable objects as before.

2. Maintain a table (hash?) from reached chunks to 
new locations for the objects in those chunks.

 Scan chunks from low end of heap.

 Maintain pointer free that counts how much 
space is used by reached objects so far.
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Mark-and-Compact --- (2)
3. Move all reached objects to their new locations, 

and also retarget all references in those objects to 
the new locations.

 Use the table of new locations.

4. Retarget root references.
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

A different Cheney, BTW, so no jokes, please.
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Cheney’s Copying Collector
 A shotgun approach to GC.

 2 heaps: Allocate space in one, copy to second when 
first is full, then swap roles.

 Maintain table of new locations.

 As soon as an object is reached, give it the next free 
chunk in the second heap.

 As you scan objects, adjust their references to point 
to second heap.
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Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial
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Short-Pause Garbage-Collection
1. Incremental --- run garbage collection in parallel 

with mutation (operation of the program).

2. Partial --- stop the mutation, but only briefly, to 
garbage collect a part of the heap.
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Problem With Incremental GC
 OK to mark garbage as reachable.

 Not OK to GC a reachable object.

 If a reference r within a Scanned object is mutated 
to point to an Unreached object, the latter may be 
garbage-collected anyway.

 Subtle point: How do you point to an Unreached
object?
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One Solution: Write Barriers
 Intercept every write of a reference in a scanned object.

 Place the new object referred to on the Unscanned list.

 A trick: protect all pages containing Scanned objects.

 A hardware interrupt will invoke the fixup. 
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Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial

Generational
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The Object Life-Cycle
 “Most objects die young.”

 But those that survive one GC are likely to survive many.

 Tailor GC to spend more time on regions of the heap 
where objects have just been created.

 Gives a better ratio of reclaimed space per unit time.
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Partial Garbage Collection
 We collect one part(ition) of the heap.

 The target set.

 We maintain for each partition a remembered set of 
those objects outside the partition (the stable set) that 
refer to objects in the target set.

 Write barriers can be used to maintain the remembered 
set.
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Collecting a Partition
 To collect a part of the heap:

1. Add the remembered set for that partition to the root 
set.

2. Do a reachability analysis as before.

 Note the resulting Scanned set may include garbage.
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Example: “Reachable” Garbage

The target

partition
Not reached from

the root set

In the remembered set

Stable set
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Generational Garbage Collection
 Divide the heap into partitions P0, P1,…

 Each partition holds older objects than the one before it.

 Create new objects in P0, until it fills up.

 Garbage collect P0 only, and move the reachable 
objects to P1.
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Generational GC --- (2)
 When P1 fills, garbage collect P0 and P1, and put the 

reachable objects in P2.

 In general:  When Pi fills, collect P0, P1,…,Pi and put 
the reachable objects in P(i +1).
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Taxonomy
Garbage Collectors

Reference-

Counters

Trace-

Based

Stop-the-World Short-Pause

Mark-and-

Sweep

Mark-and-

Compact

Basic Baker’sBasic Cheney’s

Incremental Partial

GenerationalTrain
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The Train Algorithm
 Problem with generational GC:

1. Occasional total collection (last partition).

2. Long-lived objects move many times.

 Train algorithm useful for long-lived objects.

 Replaces the higher-numbered partitions in 
generational GC.
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Partitions = “Cars”

Car 11Train 1

Car 2kCar 22Car 21

Car n2Car n1

Car 13Car 12

. . .Train 2

Train n

.

.

.
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Organization of Heap
 There can be any number of trains, and each train can 

have any number of cars.

 You need to decide on a policy that gives a reasonable 
number of each.

 New objects can be placed in last car of last train, or 
start a new car or even a new train.
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Garbage-Collection Steps
1. Collect the first car of the first train.

2. Collect the entire first train if there are no references 
from the root set or other trains.

 Important: this is how we find and eliminate large, 
cyclic garbage structures.
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Remembered Sets
 Each car has a remembered set of references from later 

trains and later cars of the same train.

 Important: since we only collect first cars and trains, 
we never need to worry about “forward” references (to 
later trains or later cars of the same train).
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Collecting the First Car of the 
First Train

 Do a partial collection as before, using every other 
car/train as the stable set.

 Move all Reachable objects of the first car 
somewhere else.

 Get rid of the car.
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Moving Reachable Objects
 If object o has a reference from another train, pick one 

such train and move o to that train.

 Same car as reference, if possible, else make new car.

 If references only from root set or first train, move o to 
another car of first train, or create new car.
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Panic Mode
 The problem: it is possible that when collecting the 

first car, nothing is garbage.

 We then have to create a new car of the first train that 
is essentially the same as the old first car.
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Panic Mode --- (2)
 If that happens, we go into panic mode, which 

requires that:

1. If a reference to any object in the first train is 
rewritten, we make the new reference a “dummy” 
member of the root set.

2. During GC, if we encounter a reference from the 
“root set,” we move the referenced object to another 
train.
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Panic Mode --- (3)
 Subtle point: If references to the first train never 

mutate, eventually all reachable objects will be sucked 
out of the first train, leaving cyclic garbage.

 But perversely, the last reference to a first-train object 
could move around so it is never to the first car.


